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Rigorous bounds are obtained on the mean normal displacement of vorticity or 
potential vorticity contours from their undisturbed parallel (or concentric) positions 
for incompressible planar flow, flow on the surface of a sphere, and three-dimensional 
quasi-geostrophic flow. It is required that the basic flows have monotonic dis- 
tributions of vorticity, and it is this requirement that turns a particular linear 
combination of conserved quantities, a combination involving the linear or angular 
impulse and the areas enclosed by vorticity contours, into a norm when viewed in a 
certain hybrid Eulerian-Lagrangian set of coordinates. Liapunov stability theorems 
constraining the growth of finite-amplitude disturbances then follow merely from 
conservation of this norm. As a corollary, it is proved that arbitrarily steep, one- 
signed vorticity gradients are stable, including the limiting case of a circular patch 
of uniform vorticity. 

1. Introduction 
Recent advances in nonlinear stability theory following Arnol’d (1966) have 

provided methods for bounding the finite-amplitude growth of disturbances to large 
classes of fluid equilibria (e.g. Holm et al. 1985; Abarbanel et al. 1986; McIntyre & 
Shepherd 1987 and references therein). This paper presents a new approach to 
constructing the norms used in the theory, leading to new results on the stability of 
steady, two-dimensional, vortieal flows. For example, one problem which has 
hitherto eluded a complete solution is that of proving the Liapunov stability of a 
circular vortex patch in an unbounded fluid. Progress was made by Wan & Pulvirenti 
(1985) who used elaborate methods to obtain a Liapunov stability result for the 
bounded case. In  the unbounded case, however, only stability in a non-standard 
sense could be proved. The present approach proves a full Liapunov stability result, 
and more, by far simpler means. 

It is a corollary of Arnol’d’s first stability theorem (Arnol’d 1966) that two- 
dimensional, inviscid, incompressible, steady flows with one-signed vorticity 
gradients bounded away from zero and infinity are stable to finite-amplitude 
disturbances. For parallel or circular basic flows, i.e. flows which possess translational 
or rotational symmetry, the norm bounding the growth of disturbances can be 
written entirely in terms of the disturbance enstrophy (Arnol’d 1966; McIntyre & 
Shepherd 1987, $6). In the case of parallel flows, for example, the disturbance 
enstrophy (the domain integral of the squared vorticity disturbance) is bounded by 
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its initial value times the basic-state, vorticity-gradient ratio IQylmax/lQylmin 
(McIntyre & Shepherd 1987, equation (6.28)). A n  analogous theorem holds for zonal 
flows on the sphere (the coordinate y being replaced by the axial coordinate z - see 
equation (A2) of Shepherd 1987) and for circularly symmetric flows on the plane (y 
being replaced by the radius r squared - see below). However, the bounds provided 
by these stability theorems are not sharp for basic flows containing a wide range of 
vorticity gradients ; and the theorems are inapplicable for piecewise-constant 
vorticity distributions such as the circular vortex patch, for which JQylmax = co and 

New methods, distinct from those originated by Arnol’d, were developed by Wan 
& Pulvirenti (1985) in an attack on the vortex-patch problem. However, a proof of 
Liapunov stability could be obtained only when the vortex is enclosed within a finite 
circular rigid boundary. The norm used was the L1 area norm A, (that is to say the 
magnitude of the areal displacement of the vortex boundary, it being assumed that 
the disturbance does not alter the area of the vortex). Let A denote the area of the 
vortex, Adom the finite area of the entire domain, Q the uniform vorticity within the 
vortex (the exterior being irrotational), and AJ the increase in the angular impulse 
(defined below) resulting from disturbing the vortex. Then Wan & Pulvirenti’s 
stability theorem may be written 

IQylmin = 0. 

The leftmost inequality can be obtained by minimizing A J  for a given A,, and the 
configuration which achieves this is a circular vortex of area A -+A, surrounded by 
a circular band of area +Al and vorticity Q the inside edge of which is at the position 
of the undisturbed vortex boundary. The rightmost inequality results from 
maximizing AJ for a given A,, and in this case the configuration is obtained by 
opening up a circular hole of irrotational fluid of area ;A1 at the centre of the domain 
and placing a detached band of equal area and vorticity Q adjacent to the outer edge 
of the domain. This is why Liapunov stability is lost when the domain is extended 
to infinity (although the left-hand inequality still, of course, gives some information 
about the stability of the circular vortex patch). 

2. The new stability theorem 
In two-dimensional, inviscid, incompressible flows, fluid particles retain their 

vorticity Q (in the geophysical context, read ‘potential vorticity ’ for ‘vorticity ’). 
Material conservation of vorticity not only implies the conservation of linear and 
angular impulse, but it also implies the conservation of any function of &-in 
general, an infinity of constraints. For instance the area enclosed within each 
constant-& contour is invariant. For piecewise-constant distributions of vorticity, 
this translates into a finite number of constraints, namely the conservation of the 
area enclosed within each contour separating distinct uniform values of Q. 

The basic flows under consideration are functions of a single coordinate, y. The 
essential step is to choose y appropriately. One chooses y such that the streamwise 
component of the conserved impulse, or angular impulse as the case may be, can be 
written in the form 

J = //yQ(x, Y, t )  dxdy, (2) 
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where t is time and x is the streamwise coordinate describing the appropriate 
translational or rotational symmetry operation (streamwise distance in the parallel 
case, azimuthal angle in the circular cases). Another way of characterizing the choice 
of y is to say that dxdy is the area element. In parallel flow, y is spanwise 
distance. In  circular planar flow, y = +r2, where r is radial distance from the centre 
of rotation. And, in spherical zonal flow, y = x ,  the distance along the axis of 
rotation. 

First consider the case where the vorticity distribution is piecewise constant. Then 
the expression (2) for J may be expressed in terms of contour integrals (via Stokes’s 
theorem) as 

n 

where the quantities yi(x, t) ,  possibly multivalued functions of x, denote the 
disturbed contour positions, and the constants AQ, denote the vorticity jumps across 
the contours Ci. For a specific contour, A&, equals the vorticity to the immediate left 
of the contour minus that to the immediate right, the convention being that each 
contour is traversed leaving the inside to the left, except when x and y are Cartesian 
coordinates in which case the opposite convention applies. Similarly, the conserved 
area within each contour may be written 

Of course, J and the A, are conserved not only for the disturbed flow 

Y,(x, t )  = Ye, + v,(x, t) 

but also for the basic state ye,, and, not surprisingly, any combination of these 
conserved quantities is likewise conserved. The particular combination 

p = J -  Je - X AQ, Yei(A, -Aet) 
i 

is precisely quadratic in the disturbance, and, therefore, when all of the AQ, have the 
same sign, 1171) = lpli qualifies as a norm, and we have 

II7II(t) = Ilrll(0). (6) 

This of course implies Liapunov stability, and indeed more. Not only does a 
sufficiently small initial disturbance imply boundedness for all time of the (same) 
norm, but the boundedness applies for an initial disturbance of any magnitude 
whatever. 

The more general situation of a continuous vorticity distribution is straight- 
forwardly obtained by taking the limit of an infinite number of contours ; AQi + dQ, 
vt(x, t )  + ~(z, t ;  Q). The condition that the AQ, all have the same sign becomes the 
requirement that the basic flow be monotonic. In  this limit, 

(7) 
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3. The vortex patch 
As a special case, consider the stability of a circular vortex patch. In  equilibrium, 

the vorticity is taken to be uniform and non-zero for r < 1 and zero for r > 1.  Then, 
the bound on the evolution 

where the possibility that 9 

of the perturbation ~ ( 8 ,  t )  = t(r ' (8, t )  - 1)  is 

$.I.("; t )  d8 = f $(8, 0) do, (8) 

may be multivalued is implicit in the 8 integration. 

4. Quasi-geostrophic flow 
With little extra effort, stability bounds can also be obtained for three-dimensional, 

baroclinic, quasi-geostrophic flow with surface temperature gradients a t  the lower 
and upper boundaries and shallow topography a t  the lower boundary. McIntyre & 
Shepherd (1987, Appendix B) give a full exposition of the stability of quasi- 
geostrophic flow and more, and the reader is referred to their paper for the basic 
equations and definitions. The bounds follow simply because fluid particles retain 
their quasi-geostrophic potential vorticity while moving incompressibly on ap- 
proximately horizontal surfaces, and the surface potential temperature distributions 
may be regarded as extensions of the interior potential vorticity distribution 
(Hoskins, McIntyre & Robertson 1985, 55b) .  

First consider plane parallel flows &(y, z )  which are monotonic in the 'meridional' 
direction y a t  each vertical level z ( z  cc log (pressure)). Let O,(y) and O,(y) denote the 
potential temperature distributions a t  the lower ( x  = xl )  and upper ( z  = x,)  surfaces, 
8,(z) the reference potential temperature distribution, p(z) the reference density 
stratification, hB(y) the height of shallow surface topography, fo the constant Coriolis 
parameter, and h(z) = d8Jdz. It is assumed that the quantities 

'(Y) = sl(Y)+h(zI)hB(y) 

and B,(y) vary monotonically with y, 8 in the same sense as Q and 8, in the opposite 
sense. Then, a straightforward calculation shows that the following norm is 
invariant : 

Note that this norm is essentially just the mass-weighted version of expression (7).  
For axisymmetric basic flows, (9) still applies with the substitution of i r2  for y and 
azimuthal angle for x. 
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5 .  Discussion 
By an appropriate linear combination of conserved quantities, an exactly 

conserved norm can be constructed when the basic flow possesses translational or 
rotational symmetry, the vorticity is monotonic, and the disturbance is viewed, in 
Lagrangian terms, as normal y-displacements of the equilibrium vorticity contours. 
The contributions include the impulse associated with the spatial symmetry of the 
basic flow and the area enclosed within each vorticity contour. The constancy of the 
norm expresses the fact that the mean-square contour displacements may never 
grow, and may never decay. 

For a given disturbed flow, what restrictions are there on the choice of the basic 
flow ? Is  there an optimal choice, one for which the stability bounds are tightest Z The 
class of possible basic flows is delimited by the necessary requirement that  they 
contain a range of equilibrium vorticity values as great as the range of disturbed 
vorticity values, for then and only then can the concept of a disturbance to a 
vorticity contour make sense. Furthermore, there is an optimal choice of the basic 
flow which minimizes the disturbance norm Ilrll, even in the presence of parallel or 
circular boundaries. A straightforward variational calculation gives 7 dx = 0 for all 
vorticity contours Q. or, since this integral is independent of time, 

Hence, for domains periodic in x (or in the appropriate limit), 

defines the optimal basic flow in terms of the initial condition. Implicit in all the x 
integrations is the possibility of multivalued y. Thus, (11) is the prescription for 
constructing the basic state which minimizes the disturbance norm and pays proper 
attention to the boundary conditions. It is exactly the same prescription used to 
define ‘available potential energy ’ for a disturbed density distribution above a flat 
surface (Lorenz 1955; also see Holliday & McIntyre 1981). Even potentially unstable 
initial conditions, e.g. a non-monotonic profile of Q, may nevertheless have a 
monotonic profile of ye(&) when calculated from ( l l ) ,  as a result, of the implicit 
multivaluedness of y(x,O;Q). ( In  finite domains, ye(&) is in fact guaranteed to be 
monotonic.) Suppose, for example, that Q(x, y, 0) = Q(y) +an  infinitesimal dis- 
turbance, and Q(y) has the S-shaped profile shown in figure 1. Then for the cross- 
section shown in the figure, ye(&) = y1-y2+y3, and I/y/j2, proportional to 

J 

is finite although the initial vorticity perturbation is infinitesimal. The finiteness of 
the norm expresses the fact that the initial contour perturbation is finite, and the 
invariance of the norm implies that the linear instability will therefore saturate a t  
finite amplitude (cf. Shepherd 1988). 

Wan & Pulvirenti (1985) also proved stability for perturbations to the circular 
vortex patch which introduce new vorticity values initially, but again Liapunov 
stability could only be obtained in the finite domain case. The preceding discussion 
in fact outlines the procedure for obtaining Liapunov stability in terms of contour 
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FIQURE 1. The basic flow (ye(@), dashed line) corresponding to the disturbed initial condition 
(&(y), solid line) which minimizes the y-displacement norm while preserving vorticity measure. 

displacements : simply rearrange the initial vorticity distribution by putting the fluid 
particles with the highest value of vorticity around the origin, the centre of rotation, 
and those with successively lower values a t  successively greater radii. The resultant 
circular distribution of vorticity is then the basic state which minimizes the 
vorticity-contour displacement norm 117 11 whose invariance then proves Liapunov 
stability. The proof of stability fails, however, if the vorticity distribution contains 
both signs of vorticity in an infinite domain for which the fluid is irrotational a t  
infinity, precisely because a monotonic basic state cannot be constructed from (11)  
without sending the fluid particles of one sign to infinity. 

Finally, we note that the expression for \\qllz in (7) can be regarded as a 
pseudomomentum (or angular pseudomomentum) in the sense discussed in McIntyre 
& Shepherd (1987, $7 ) .  

I wish to thank M. E. McIntyre and T. G. Shepherd for many useful conversations 
during the development of this manuscript. 
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